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Abstract
The modified Green function appropriate for calculation of coulombic lattice
potentials is developed in a spherical harmonic expansion. This is derived
from the corresponding Ewald sum in Cartesian coordinates, by applying
Gegenbauer’s addition theorem for modified spherical Bessel functions to
the screened Coulomb potentials resulting from Laplace transformation with
respect to the scalar convergence parameter, and Bauer’s expansion to the plane
waves. It is useful where the charge-density distribution about each nucleus
is represented by a spherical harmonic expansion. Radial coefficients of the
spherical harmonics are attenuated exponentially, and orthogonality reduces
determination of electrostatic lattice potentials to one-dimensional quadratures.
This use of the Green function is contrasted with conventional approaches
based on point-multipole representations, in which important information on
the diffuseness of electronic charge density around the nuclei may be lost in
the calculation of multipole coefficients. Possible applications of this result in
electronic structure calculations are briefly discussed.

1. Introduction

The physical properties of solids are all ultimately determined by the manner in which the
electrons are distributed around nuclei, and the extent to which this distribution is affected, at
short and long distances, by surrounding atoms in the lattice. The calculation of the potential
energy associated with long-range coulombic forces is an interesting problem, with a long
history dating back to the work of Madelung (1918) on the cohesive energy of ionic lattices.
The numerous treatments that have been published since then can be divided into two broad
groups: those that approximate the crystal as a collection of point charges, and those where
electronic structure is also considered.

The first category, which includes the celebrated Ewald (1921) method, focuses on the
evaluation of lattice sums for the Coulomb potential. These involve replacement of the
reciprocal distance with its representation as a Gaussian integral (Ewald 1921, Chaba and
Pathria 1975, 1976a, 1976b), a gamma function integral (van der Hoff and Benson 1953,
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Lekner 1991, 1998, Grønbech-Jensen et al 1997), or various types of Fourier–Bessel integral
(Hautot 1974, Macdonald and Barlow 1966, Marshall and Conway 1992a, 1992b, Miller 1995).
Other approaches have relied on the connection between lattice sums and multi-dimensional
generalizations of the Riemann zeta function (Lennard-Jones and Ingham 1925, Topping 1927,
Glasser 1973a, 1973b, Zucker 1974–6).

The second category of methods, which have arisen from solid-state electronic structure
calculations, involves representation of the charge density by multipole expansions within
spherical regions centred at the nuclear positions and by a plane-wave expansion in the
interstitial regions (Rudge 1969a, Weinert 1981, Herzig 1985, Krasovskii et al 1999), or
bipolar spherical harmonic expansion of the periodic Green function for Poisson’s equation
(Schadler 1992, Oh et al 1992, Zhang et al 1994). The resulting expressions for the potential
involve doubly infinite series of spherical harmonics, which are often conditionally convergent.

Recently (Marshall (2000); hereinafter referred to as part I), I showed that point-charge
lattice sums could be efficiently evaluated by use of a periodic Green function for Poisson’s
equation, represented either as a Fourier series involving modified Bessel functions of the
second kind (cf Lekner 1991, 1998) resulting from application of the Poisson summation
formula (cf Marshall 1998a, 1998b, 1999), or as an Ewald expansion in Gaussian exponentials
and complementary error functions; the Bessel function series is the more rapidly convergent.
Two salient advantages of using Green functions can be identified:

(1) the potential due to a periodic charge distribution is given explicitly as the integral of the
product of the charge density and the Green function over the volume of the unit cell; and

(2) numerical ambiguities associated with the conditional convergence of Coulomb lattice
sums are avoided.

Although the use of the Green function to determine the potential in this manner is in
principle equally applicable to continuous or discrete charge-density distributions, the repre-
sentations derived in part I are not necessarily in the most convenient form for performing the
required integrations. The purpose of the present paper is to describe a spherical harmonic
representation of the Green function, and to demonstrate how this enables the above two advan-
tages to be realized for a periodic charge density in the form resulting from solid-state electronic
structure calculations. The principal motivation for this work was the problem of calculating
the electrostatic potential due to water molecules in crystalline gas clathrate hydrates.

2. Overview

In the following sections, the simple physical model used to represent the charge density of a
crystal is described, and the relevant geometrical variables defined. Following this, the three
groups of terms that make up the Green function are in turn expanded in spherical harmonics,
in which the coefficient radial parts are expressed in terms of a Gaussian integral involving a
modified spherical Bessel function, or as a series of complementary error function integrals.
An expression is also given for the non-singular part of the Green function. Finally, calculation
of lattice potentials by use of the Green function is contrasted with conventional approaches
based on multipole expansions.

3. Analysis

3.1. Definition of geometrical variables

A representation of a crystal as spherical charge distributions arranged in a lattice generated
by an orthogonal basis of primitive translation vectors is depicted in figure 1. The potential
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is required at a field point r, due to a distribution centred at r0, and its repetitions centred at
r0 + RK , where

RK = (Na,Mb,Kc), (1)

N , M , and K are integers, and a, b, and c are lattice parameters. The charge density within each
sphere can be regarded as a distribution of point charges, whose spherical polar coordinates
are expressed relative to the centre, with a polar axis parallel to one of the lattice coordinates:

r′ = r0 + ρ′ ρ′ = (ρ ′ sin θ ′ cos φ′, ρ ′ sin θ ′ sin φ′, ρ ′ cos θ ′). (2)

The source points in each of the repeated spheres occupy the same positions with respect to
the centres. It proves more convenient to specify the position of the field point in terms of the
same coordinate system than with respect to the origin of the central unit cell, by means of the
vector

ρK = r − r0 − RK, (3)

whose spherical polar coordinates are

ρK =
√

(x − x0 − Na)2 + (y − y0 − Mb)2 + (z − z0 − Kc)2 (4a)

θK = arccos

(
z − z0 − Kc

ρK

)
(4b)

φK = arctan

(
y − y0 − Mb

x − x0 − Na

)
. (4c)

The spherical harmonic expansion of the complementary error function terms in the Green
function relies on the relation between the displacement from the source point in each sphere
to the field point, the magnitudes of the vectors ρK and ρ′, and the angle γK between them,
which is

|ρK − ρ′| =
√

ρ2
K + ρ ′2 − 2ρKρ ′ cos γK; (5)

the angle γK can in turn be related to the spherical polar coordinates of these two vectors:

cos γK = cos θK cos θ ′ + sin θK sin θ ′ cos(φK − φ′). (6)

3.2. The periodic Green function: plane-wave expansion and Ewald sum

The periodic Green function P222 for the lattice is represented by the plane-wave expansion

P222(r|r′) = 1

abc

∑
k

′ eik·(r−r′)

|k|2 r = (x, y, z) k =
(

2nπ

a
,

2mπ

b
,

2kπ

c

)
, (7)

in which the lattice parameters in the x-, y-, and z-directions are a, b, and c, respectively, and the
summation extends over all k-space points except the origin n = m = k = 0. (The subscripts
2 signify that each coordinate axis is intersected by two planar boundaries.) Physically, this
function gives the potential at r due to a unit positive point charge at r′, a superimposed unit
negative charge distributed uniformly over the entire unit cell, and infinite periodic repetitions
of this arrangement in three directions. Decomposition of equation (7) into one-, two-, and
three-dimensional contributions and application of the Poisson summation formula gives a
series of two-dimensional logarithmic potentials plus a Fourier series containing modified
Bessel functions of the second kind. Ewald summation results in a series of complementary
error functions and an attenuated Fourier series:

P222(r|r′) = 1

4π

∑
K

erfc(|r − r′ − RK |/2
√

t)

|r − r′ − RK | − t

abc
+

1

abc

∑
K

′ e−t |k|2+ik·(r−r′)

|k|2
RK = (Na,Mb,Kc).

(8)
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γ

r0

RK

r

ρ’

r’ = r0 + ρ’

r - r’

c

Figure 1. Definition of the geometrical variables and coordinates.

The first summation extends over all values of the indices K , M , and N , and each term can be
regarded as expressing the effect of a repetition of the source in neighbouring cells. The value
of the scalar convergence parameter t determines the contributions of the Fourier (reciprocal-
space) and Coulomb (real-space) sums to the final result; its value can be chosen such that the
same number of terms are required for convergent estimates of each series. As shown in part I,
the Bessel function expansion converges considerably more rapidly than the Ewald sum, and is
therefore to be preferred if the charge distribution in the unit cell can be accurately represented
as a discrete set of points. Since for any charge distribution σ satisfying the electroneutrality
condition ∫

�

σ(r′) dr′ = 0 (9)
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the potential is given by

V (r) = 4π
∫
�

σ(r′)P222(r|r′) dr′, (10)

determination of the potential reduces in principle to numerical quadratures, for which
either representation of the Green function would be suitable. ‘Brute-force’ application of
multidimensional quadrature methods is almost certainly impractical: a relatively coarse
mesh consisting of 10 nodes on each axis would require 1000 function evaluations, and the
concentration of most of the electron density in relatively small volumes about the nuclei would
require that the nodes be much more numerous and closely spaced in these regions. But if
the charge density about each nucleus can be expanded in a series of normalized spherical
harmonics

σ(ρ, θ, φ) =
∞∑

p=0

p∑
q=−p

σpq(ρ)Y q
p (θ, φ) (11)

and the Green function can be similarly represented, most of the terms in the integrand vanish
by orthonormality on integration with respect to the angular coordinates, leaving a series of one-
dimensional integrals that can be evaluated numerically, or in favourable cases, analytically.

3.3. Transformation of the complementary error function terms

To construct a spherical harmonic expansion of the first series on the right-hand side of
equation (8), namely

S1 = 1

4π

∑
K

erfc(|r − r′ − RK |/2
√

t)

|r − r′ − RK | , (12)

the coordinates of the field and source point vectors are expressed in terms of the spherical
coordinates about the Kth repeated sphere, as defined in equations (3)–(6):

S1 = 1

4π

∑
K

erfc(|ρK − ρ′|/2
√

t)

|ρK − ρ ′| = 1

4π

∑
K

erfc
(√

ρ2
K + ρ ′2 − 2ρKρ ′ cos γK/2

√
t
)

√
ρ2

K + ρ ′2 − 2ρKρ ′ cos γK

; (13)

taking the Laplace transform with respect to t gives (Erdélyi et al 1954, p 177, formula (11))

S̄1 = 1

4π

∑
K

exp
(
−s1/2

√
ρ2

K + ρ ′2 − 2ρKρ ′ cos γK

)
s

√
ρ2

K + ρ ′2 − 2ρKρ ′ cos γK

. (14)

This transformed series of error functions can now be expanded in Legendre polynomials by
use of Gegenbauer’s addition theorem for modified spherical Bessel functions (Watson 1944,
p 366):

exp
(

− s1/2
√

ρ2
K + ρ ′2 − 2ρKρ ′ cos γK

)
s

√
ρ2

K + ρ ′2 − 2ρKρ ′ cos γK

=
∞∑

n=0

(2n + 1)
In+1/2(ρ

′√s)Kn+1/2(ρK

√
s)

s
√

ρ ′ρK

Pn(cos γK) (15)

or, somewhat more simply,



3180 S L Marshall

exp
(
−s1/2

√
ρ2

K + ρ ′2 − 2ρKρ ′ cos γK

)
s

√
ρ2

K + ρ ′2 − 2ρKρ ′ cos γK

= 2

π

∞∑
n=0

(2n + 1)
in(ρ

′√s)kn(ρK

√
s)√

s
Pn(cos γK)

(16)

where

in(z) =
√

π

2z
In+1/2(z) kn(z) =

√
π

2z
Kn+1/2(z). (17)

From the closed-form representations (Watson 1944, p 80) of the i and k Bessel functions

in(z) = 1

2z

[
ez

n∑
p=1

(−1)p(n + p)!

p!(n − p)!(2z)p
+ (−1)n+1e−z

n∑
p=1

(n + p)!

p!(n − p)!(2z)p

]
(18a)

and

kn(z) = π

2z
e−z

n∑
p=0

(n + p)!

p!(n − p)!(2z)p
, (18b)

it is clear that the Laplace transform represented by equation (16) will tend to zero with
increasing s only if the argument of the k Bessel function is greater than the argument of the i

Bessel function: this condition is necessary for the existence of the inverse Laplace transform.
If this condition is not satisfied, convergence can be ensured simply by interchanging the two
arguments. The limiting form of equation (16) obtained when the two radial arguments are
both equal to ρ is

e−ρ
√

2s(1−cos γK )

sρ
√

2(1 − cos γK)
= 2

π

∞∑
n=0

(2n + 1)
in(ρ

√
s)kn(ρ

√
s)√

s
Pn(cos γK); (16a)

the sum of Legendre functions on the right-hand side does not seem to be otherwise expressible
in closed form, but it is finite if the cosine of the angle gamma is different from 1. The expression
necessarily becomes singular as the cos γK approaches 1—this singularity is identical to that
possessed by the well-known expansion of the free-space Green function in Legendre functions
(Barton 1989, p 384), and is just the polar-coordinate counterpart of that shown by the K = 0
error function term in the original form of the Ewald sum. The Legendre functions can
be expanded further by applying the addition theorem for spherical harmonics (Morse and
Feshbach 1953, p 1274):

Pn(cos γK) = 4π

2n + 1

n∑
m=−n

Ym
n (θK, φK)Ym∗

n (θ ′, φ′). (19)

Combining equations (14), (16), and (18),

S̄i = 2

π

∑
K

∞∑
n=0

in(ρ
′√s)kn(ρK

√
s)√

s

{ n∑
m=−n

Ym
n (θK, φK)Ym∗

n (θ ′, φ′)
}
. (20)

As shown in the appendix, the required inverse Laplace transform is

L−1

[
in(ρ

′√s)kn(ρK

√
s)√

s

]
=

∫ t

0

e−(ρ2
K+ρ ′2)/4t

2
√

πt3
in

(
ρKρ ′

2t

)
dt. (21)

An alternative representation, which is more convenient for some purposes, follows by
expanding the Bessel functions according to equations (18a) and (18b), and noting that the
inverse Laplace transform of each term is a repeated integral of the complementary error
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function (Handbook of Mathematical Functions 1964, p 1026, formula 29.3.86). The required
result can therefore be written as

S1 = 2

π

∑
K

∞∑
n=0

{
π

4

n∑
p=0

n∑
q=0

Apq

(2
√

t)p+q+1

ρ
p+1
K ρ ′q+1

erfcip+q+1

(
ρK − ρ ′

2
√

t

)

+ (−1)n+1
n∑

p=0

n∑
q=0

Bpq

(2
√

t)p+q+1

ρ
p+1
K ρ ′q+1

erfcip+q+1

(
ρK − ρ ′

2
√

t

)}

×
{ n∑

m=−n

Ym
n (θK, φK)Ym∗

n (θ ′, φ′)
}

(22a)

where as shown in the appendix, the coefficients are complicated products of factorials and

erfcin(z) ≡ in erfc(z) = 2√
π

∫ ∞

0

(t − z)n

n!
e−t2

dt,

or more compactly as

S1 = 2

π

∑
K

∞∑
n=0

{∫ t

0

e−(ρ2
K+ρ ′2)/4t

2
√

πt3
in

(
ρKρ ′

2t

)
dt

}{ n∑
m=−n

Ym
n (θK, φK)Ym∗

n (θ ′, φ′)
}
. (22b)

3.4. Transformation of the constant term

The second term on the right-hand side of equation (8) corresponds physically to the effect
of the uniform neutralizing background charge that ensures the convergence of the Green
function. This is

S2 = − t

abc
, (23)

and since the first of the normalized spherical harmonics is

Y 0
0 (θ ′, φ′) = Y 0∗

0 (θ ′, φ′) = 1√
4π

, (24)

S2 = − t
√

4π

abc
Y 0∗

0 (θ ′, φ′). (25)

3.5. Transformation of the Fourier series

The development of the plane-wave terms in spherical harmonics can be achieved by application
of Bauer’s (1859) formulae (cf Watson (1944, p 368), Morse and Feshbach (1953, p 1466)):

eik·r = 4π
∞∑

n′=0

injn(kr)
n∑

m=−n

Ym
n (θ, φ)Ym∗

n (θK, φK) (26a)

e−ik·r = 4π
∞∑

n′=0

i−njn(kr)

n∑
m=−n

Ym∗
n (θ, φ)Ym

n (θK, φK) (26b)

where θ, φ and θK, φK are the polar angles associated with the vectors r and k, respectively,
and jn is the spherical Bessel function of order n. In the present context, the vector r − r′

appearing in equation (8) can be written as

r − r′ = r − r0 − ρ′, (27)

so that

eik·(r−r′) = eik·(r−r0)eik·ρ′
. (28)
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The plane-wave series can therefore be written as

S3 = 1

abc

∑
k

′ e−t |k|2−ik·(r−r0)

|k|2
∞∑

n=0

i−njn(kρ
′)

n∑
m=−n

Ym∗
n (θ ′, φ′)Ym

n (θK, φK). (29)

3.6. The periodic Green function: spherical harmonic expansion

The required representation of the periodic Green function follows by combining the exp-
ressions given in equations (22), (25) and (29):

P222(r|r′) = 2

π

∑
K

∞∑
n=0

{∫ t

0

e−(ρ2
K+ρ ′2)/4t

2
√

πt3
in

(
ρKρ ′

2t

)
dt

}{ n∑
m=−n

Ym
n (θK, φK)Ym∗

n (θ ′, φ′)
}

− t
√

4π

abc
Y 0∗

0 (θ ′, φ′) +
1

abc

∑
k

′ e−t |k|2−ik·(r−r0)

|k|2
∞∑

n=0

i−njn(kρ
′)

×
n∑

m=−n

Ym∗
n (θ ′, φ′)Ym

n (θK, φK). (30)

The dependence of the terms in this expression on the radial variables is qualitatively
similar to that in the Cartesian form, equation (8). Thus, the coefficients of the spherical
harmonics decay exponentially to zero when summed over the real and reciprocal lattices; the
rapidity of attenuation of the real-space terms depends inversely on the value of t , whereas
that of the reciprocal-space terms depends directly on the value of t . The significance of this
is that the conditional convergence arising in earlier treatments (Herzig 1985, Schadler 1992,
Zhang et al 1994) is eliminated. The behaviour of this (or any) Green function as the field and
source points approach each other is of particular interest. From equation (8), the singularity
is clearly localized in the error function term with K = 0; that the singularity in equation (30)
is similarly localized in the K = 0 term of the real-space sum is easily seen by expanding the
exponential on the left-hand side of equation (16):

exp
(
−s1/2

√
ρ2

K + ρ ′2 − 2ρKρ ′ cos γK

)
s

√
ρ2

K + ρ ′2 − 2ρKρ ′ cos γK

= 1

s

∞∑
p=0

(−1)psp/2

p!
[ρ2

K + ρ ′2 − 2ρKρ ′ cos γK](p−1)/2. (31)

As ρK tends to ρ ′ and γK tends to zero, all terms vanish except the first, for which

lim
ρK→ρ ′,γK→0

1

s

√
ρ2

K + ρ ′2 − 2ρKρ ′ cos γK

= ∞. (32)

The non-singular part can be isolated by subtraction of the free-space Green function

G000(r|r′) = 1

4π |r − r′| = 1

4π
√

ρ2
K + ρ ′2 − 2ρKρ ′ cos γK

. (33)

Assuming that ρK > ρ ′, this can be expanded in Legendre functions (Barton 1989, p 384):

G000(r|r′) = 1

4πρK

∞∑
n=0

(
ρ ′

ρK

)n

Pn(cos γK), (34)

with the result that
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Q222(r|r′) ≡ P222(r|r′) − G000(r|r′)

=
∑
K

∞∑
n=0

{
2

π

∫ t

0

e−(ρ2
K+ρ ′2)/4t

2
√

πt3
in

(
ρKρ ′

2t

)
dt − 1

(2n + 1)ρK

(
ρ ′

ρK

)n}

×
{ n∑

m=−n

Ym
n (θK, φK)Ym∗

n (θ ′, φ′)
}

− t
√

4π

abc
Y 0∗

0 (θ ′, φ′)

+
1

abc

∑
k

′ e−t |k|2−ik·(r−r0)

|k|2
∞∑

n=0

i−njn(kρ
′)

n∑
m=−n

Ym∗
n (θ ′, φ′)Ym

n (θK, φK). (35)

3.7. Determination of the potential

The potential at r due to a charge distribution about r0 given by equation (11) is given by the
integral

V (r) = 4π
∫ r1

ρ=0

∫ π

θ=0

∫ 2π

φ=0
σ(ρ ′, θ ′, φ′)P222(r|r′)ρ ′2 sin θ ′ dρ ′ dθ ′ dφ′

= 4π
∫ r1

ρ ′=0

∫ π

θ ′=0

∫ 2π

φ′=0

{ ∞∑
n=0

n∑
m=−n

σmn(ρ
′)Ym

n (θ ′, φ′)
}

× P222(r|r′)ρ ′2 sin θ ′ dρ ′ dθ ′ dφ′. (36)

The operations of Laplace transformation and integration with respect to the radial coordinate
are interchangeable, subject to relatively mild restrictions on the radial coefficient functions.
Assuming that these conditions are satisfied, the contribution of the real-space sum to the
potential can be evaluated either by integrating the Laplace transform times each σ -component
(defined in equation (11)) and inverting the result, or by integrating the σ -component times
the original function given by equation (20). Thus, proceeding in the first way, the integral of
σ times the Laplace transform of S1 is∫ r1

ρ=0

∫ π

θ=0

∫ 2π

φ=0
σ(ρ ′, θ ′, φ′)S̄1ρ

′2 sin θ ′ dρ ′ dθ ′ dφ′

= 2

π

∫ r1

ρ ′=0

∫ π

θ ′=0

∫ 2π

φ′=0

{ ∞∑
p=0

p∑
q=−p

σpq(ρ
′)Y q

p (θ ′, φ′)
} ∑

K

∞∑
n=0

in(ρ
′√s)kn(ρK

√
s)√

s

×
{ n∑

m=−n

Ym
n (θK, φK)Ym∗

n (θ ′, φ′)
}
ρ ′2 sin θ ′ dρ ′ dθ ′ dφ′. (37)

The integrals of all products of the spherical harmonics vanish by orthonormality except that
for which n = p and m = q, which is unity, so∫ r1

ρ=0

∫ π

θ=0

∫ 2π

φ=0
σ(ρ ′, θ ′, φ′)S̄1ρ

′2 sin θ ′ dρ ′ dθ ′ dφ′

= 2

π

∑
K

∞∑
p=0

p∑
q=−p

{∫ r1

ρ ′=0
σpq(ρ

′)
in(ρ

′√s)kn(ρK

√
s)√

s
ρ ′2 dρ ′

}
Y q

p (θK, φK). (38)

Taking the inverse Laplace transform of equation (37),∫ r1

ρ=0

∫ π

θ=0

∫ 2π

φ=0
σ(ρ ′, θ ′, φ′)S1ρ

′2 sin θ ′ dρ ′ dθ ′ dφ′

= 2

π

∑
K

∞∑
p=0

p∑
q=−p

L−1

{∫ r1

ρ ′=0
σpq(ρ

′)
in(ρ

′√s)kn(ρK

√
s)√

s
ρ ′2 dρ ′

}
Y q

p (θK, φK).

(39)
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The orthonormality of the spherical harmonics is not affected by the interchange of Laplace
transformation and radial integration. Thus, for example, it follows from equation (22a) that∫ r1

ρ=0

∫ π

θ=0

∫ 2π

φ=0
σ(ρ ′, θ ′, φ′)S1ρ

′2 sin θ ′ dρ ′ dθ ′ dφ′ = 2

π

∑
K

∞∑
p=0

p∑
q=−p

∫ r1

ρ ′=0
σpq(ρ

′)

×
{
π

4

n∑
p=0

n∑
q=0

Apq

(2
√

t)p+q+1

ρ
p+1
K ρ ′q+1

erfcip+q+1

(
ρK − ρ ′

2
√

t

)

+
n∑

p=0

n∑
q=0

Bpq

(2
√

t)p+q+1

ρ
p+1
K ρ ′q+1

erfcip+q+1

(
ρK + ρ ′

2
√

t

)}
ρ ′2 dρ ′ Y q

p (θK, φK). (40)

Integration of S2 times σ selects the zeroth term:∫ r1

ρ ′=0

∫ π

θ ′=0

∫ 2π

φ′=0

{ ∞∑
p=0

p∑
q=−p

σpq(ρ
′)Y q

p (θ ′, φ′)
}{

− t
√

4π

abc
Y 0∗

0 (θ ′, φ′)
}
ρ ′2 sin θ ′ dρ ′ dθ ′ dφ′

= − t
√

4π

abc

{∫ r1

0
σ00(ρ

′)ρ ′2 dρ ′
}
, (41)

and similarly, integration of S3 produces∫ r1

ρ ′=0

∫ π

θ ′=0

∫ 2π

φ′=0

{ ∞∑
p=0

p∑
q=−p

σpq(ρ
′)Y q

p (θ ′, φ′)
}{

1

abc

∑
k

′ e−t |k|2−ik·(r−r0)

|k|2
∞∑

n=0

i−njn(kρ
′)

×
n∑

m=−n

Ym∗
n (θ ′, φ′)Ym

n (θK, φK)

}
ρ ′2 sin θ ′ dρ ′ dθ ′ dφ′

= 1

abc

∑
k

′ e−t |k|2−ik·(r−r0)

|k|2
∞∑

p=0

i−p

×
p∑

q=−p

{∫ r1

ρ ′=0
σpq(ρ

′)jp(kρ ′)ρ ′2 dρ ′
}
Y q

p (θK, φK). (42)

Combining these results, it is seen that the potential at the field point is the sum of terms that
are equivalent to distributed monopole, dipole, quadrupole, . . . , densities about each nucleus.

The relative merits of the two representations of the real-space sum in the Green function
given by equations (20) and (21) can be demonstrated most clearly by considering in more
detail the evaluation of the integrals appearing in the foregoing general expressions for the
potential. Equation (21) has the obvious advantage of compactness, and as shown in the
appendix can be evaluated in terms of incomplete gamma functions or exponential integrals.
The complementary error function expansion appears somewhat unwieldy, but it possesses
the great advantage that its dependence on each radial coordinate can be separated in a
way that is apparently not possible for equation (21). Assuming again that the operations
of integration with respect to the radial coordinate and Laplace transformation with respect
to t are interchangeable, this separability proves valuable in the evaluation of integrals of the
form

I =
∫ r1

0
(2

√
t)n erfcin

(
R ± r

2
√

t

)
f (r) dr, (43)

where R > r1 and f represents the product of a radial coefficient function and some inverse
power of r . Taking Laplace transforms by application of equation (A.14),

Ī =
∫ r1

0

e−(R±r)
√

s

s1+n/2
f (r) dr = e−R

√
s

s1+n/2

∫ r1

0
e∓r

√
sf (r) dr. (44)
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Since this integral is over a finite interval, it can be equally well evaluated if the argument
of the exponential is of either sign. If the radial functions are determined from a numerical
solution of the Schrödinger equation, a numerical quadrature rule with nodes rp and weights
wp can be applied:∫ r1

0
e∓r

√
sf (r) dr ≈

P∑
p=1

wpe∓rp
√

sf (rp), (45)

so one has

Ī ≈ e−R
√

s

S1+n/2

P∑
p=1

wpe∓rp
√

sf (rp) =
P∑

p=1

wp

e(−R±rp)
√

s

s1+n/2
f (rp) (46)

and

I ≈
P∑

p=1

wp(2
√

t)n erfcin

(
R ± rp

2
√

t

)
f (rp). (47)

If the charge density is uniform throughout the spheres, all terms in equation (11) are zero
except that corresponding to p = q = 0, which is assumed to be a constant, σ . This
model can be regarded as the degenerate limiting case of the spherical atom or ‘promolecule’
approximation of atomic charge-density distributions, which is used in the refinement of single-
crystal x-ray diffraction data and their use in the calculation of properties such as molecular
moments (Spackman 1992) and cohesive energies (Trefry et al (1987); see also Gibbs et al
(1992), Feth et al (2000), Spackman and Maslen (1987)). On integration with respect to the
angular coordinates, all but one of the terms of equation (38) likewise vanish, and applying
equations (18a) and (18b) for n = 0, the modified spherical Bessel function product is

k0(ρK

√
s)i0(ρ

′√s)√
s

= π

4ρKρ ′s
[e−(ρK−ρ ′)

√
s − e−(ρK+ρ ′)

√
s]. (48)

The non-vanishing term therefore involves the integral∫ r1

0

k0(ρK

√
s)i0(ρ

′√s)√
s

σ00(ρ
′)ρ ′2 dρ ′

= πσ

4ρKρ ′s3/2

[
e−ρK

√
s

∫ r1

0
e+ρ ′√sρ ′ dρ ′ − e−ρK

√
s

∫ r1

0
e−ρ ′√s dρ ′

]
. (49)

Substituting the elementary results∫ r1

0
e+ρ ′√sρ ′ dρ ′ = r1e+r1

√
s

√
s

− e+r1
√

s

s
+

1

s
(50a)

∫ r1

0
e−ρ ′√sρ ′dρ ′ = − r1e−r1

√
s

√
s

− e−r1
√

s

s
+

1

s
(50b)

results in∫ r1

0

k0(ρK

√
s)i0(ρ

′√s)√
s

σ00(ρ
′)ρ ′2 dρ ′

= πσ

4ρK

[
r1

e−(ρK−r1)
√

s + e−(ρK+r1)
√

s

s2
− e−(ρK−r1)

√
s − e−(ρK+r1)

√
s

s5/2

]
, (51)

which on application of equation (A.14) gives
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L−1

{∫ r1

0

k0(ρK

√
s)i0(ρ

′√s)√
s

σ00(ρ
′)ρ ′2 dρ ′

}

= πσ

4ρK

[
r1(2

√
t)2 erfci2

(
ρK − r1

2
√

t

)
+ r1(2

√
t)2 erfci2

(
ρK + r1

2
√

t

)

− (2
√

t)3 erfci3

(
ρK − r1

2
√

t

)
+ (2

√
t)3 erfci3

(
ρK + r1

2
√

t

)]
. (52)

Therefore,∫ r1

ρ=0

∫ π

θ=0

∫ 2π

φ=0
σ(ρ ′, θ ′, φ′)S1ρ

′2 sin θ ′ dρ ′ dθ ′ dφ′

= σ

2

∑
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1

ρK
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r1(2

√
t)2erfci2

(
ρK − r1

2
√

t

)
+ r1(2

√
t)2 erfci2

(
ρK + r1

2
√

t

)

−(2
√

t)3 erfci3

(
ρK − r1

2
√

t

)
+ (2

√
t)3 erfci3

(
ρK + r1

2
√

t

)]
. (53)

Integration of the constant term is straightforward:∫ r1

ρ=0

∫ π

θ=0

∫ 2π

φ=0
σ(ρ ′, θ ′, φ′)S2ρ

′2 sin θ ′ dρ ′ dθ ′ dφ′

= − t
√

4π

abc

{∫ r1

0
σ00(ρ

′)ρ ′2 dρ ′
}

= − t
√

4π

abc

r3
1σ

3
. (54)

The contribution of the plane-wave expansion can be evaluated by making use of the
representation

j0(z) = sin z

z
; (55)

thus, by orthonormality,∫ r1

ρ=0

∫ π

θ=0

∫ 2π

φ=0
σ(ρ ′, θ ′, φ′)S1ρ

′2 sin θ ′ dρ ′ dθ ′ dφ′

= 1

abc

∑
k

′ e−t |k|2−ik·(r−r0)

|k|2
∫ r1

ρ ′=0
σ00(ρ

′)j0(kρ
′)ρ ′2 dρ ′

= σ

abc

∑
k

′ e−t |k|2−ik·(r−r0)

|k|2
∫ r1

ρ ′=0

sin kρ ′

kρ ′ ρ ′2 dρ ′. (56)

The potential at the field point due to the infinite periodic repetitions of a uniformly charged
sphere and its neutralizing background charge density is therefore 4π times the sum of the
expressions given in equations (53), (54), and (56). But to apply these results to crystalline
arrays of ions, it is necessary to take into account that the net charge on the ion is the sum
of the nuclear charge (concentrated at the centre) and the combined electronic charge. Since
the potential due to the nuclear charge and its periodic repetitions is given by the appropriate
multiple of the Green function, the potential at r due to periodic repetitions of an ion i and its
uniform neutralizing background, with nuclear and electronic charge numbers Z+,i and Z−,i ,
centred at r0,i , is

Vi(r|r0,i ) = 4πZ+,iP222(r|r0,i ) − 4π |Z−,i |
{
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∑
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ρK
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√
t)2 erfci2
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√
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)

+ r1(2
√

t)2 erfci2

(
ρK + r1

2
√

t

)
− (2

√
t)3 erfci3

(
ρK − r1

2
√

t

)
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+ (2
√

t)3 erfci3

(
ρK + r1

2
√

t

)]
− t

√
4π

abc

r3
1σ

3

+
σ

abc

∑
k

′ e−t |k|2−ik·(r−r0)

|k|2
∫ r1

ρ ′=0

sin kρ ′

kρ ′ ρ ′2 dρ ′
}
. (57)

In a real system, an expression of this type applies to each ion in the unit cell; the total potential
is that due to an electroneutral combination of such ionic potentials. Thus,

V (r) =
∑

i

Vi(r|r0,i ). (58)

Of course, the charge density about each nucleus is not uniform, but must be obtained from
a solution of the Schrödinger equation with self-consistent inclusion of the coulombic lattice
potential. But consideration of this crude model in the present context is of interest in that the
expression for the real-space sum in the potential can be derived without use of the spherical
harmonic expansion, thereby providing a check on the consistency of the analysis presented
here. Denoting by r the distance between the field point and the source points in each sphere,

r =
√

ρ2
K + ρ ′2 − 2ρKρ ′ cos γK (59)

from which it is clear that
dr

dγK

= 1

2

−2Rρ ′(− sin γK)√
ρ2

K + ρ ′2 − 2ρKρ ′ cos γK

= ρKρ ′ sin γK

r
. (60)

This result is useful in the derivation of a general expression for the integral:

I = 2π
∫ r1

ρ ′=0
ρ ′2σ(ρ ′)

{∫ π

r1=0

f
(√

ρ2
K + ρ ′2 − 2ρKρ ′ cos γK

)
√

ρ2
K + ρ ′2 − 2ρKρ ′ cos γK

sin γK dγK

}
dρ ′

= 2π

ρK

∫ r1

0
ρ ′σ(ρ ′)

{∫ π

0
f (r)

dr

dγK

dγK

}
dρ ′

= 2π

ρK

∫ r1

0
ρ ′σ(ρ ′)

{∫ ρK+r1

ρK−r1

f (r) dr

}
dρ ′. (61)

If σ is constant and the indefinite integral of the function f is represented by F ,

I = 2πσ

ρK

∫ r1

0
ρ ′[F(ρK + ρ ′) − F(ρK + ρ ′)] dρ ′,

= 2πσ

ρK

∫ r1

0
ρ ′F(ρK + ρ ′) dρ ′ − 2πσ

ρK

∫ r1

0
ρ ′F(ρK − ρ ′) dρ ′

= 2πσ

ρK

∫ ρK+r1

ρK−r1

(u − ρK)F (u) du, (62)

and integration by parts gives

I = 2πσ

ρK

{r1[G(ρK + r1) + G(ρK − r1)] + H(ρK − r1) − H(ρK + r1)}, (63)

where

G′(z) = F(z) H ′(z) = G(z).

With f = 1,

F(z) = z G(z) = z2

2
H(z) = z3

6
,
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and it can easily be verified that

I = 2πσ

ρK

{
r1

[
(ρK + r1)

2 + (ρK − r1)
2

2

]
+

(ρK − r1)
3 − (ρK + r1)

3

6

}
= 4πσr3

1

3ρK

, (64)

which expresses the result of classical field theory that the potential due to a uniformly charged
sphere in free space is equal to that due to the entire sphere concentrated at the centre. Now if

f (z) = erfc

(
z

2
√

t

)
,

it follows from the properties of the erfcin functions (Handbook of Mathematical Functions
1964) that
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√
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√
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(65)

Use of these results in equation (63) gives

I = 2πσ
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[
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√
t)2 erfci2
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√
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√
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√
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√

t)3 erfci3
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√
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)
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√
t)3 erfci3

(
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2
√

t
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. (66)

This is evidently identical to the part of equation (57) that is due to the negative charge density.

4. Discussion

The spherical harmonic expansion of the periodic Green function as developed in the present
paper provides a solution of the ‘generalized Ewald potential problem’ that arises in the
development of self-consistent electronic structure calculations for crystals, based, for example,
on the augmented-plane-wave (APW) formalism (Slater 1937, 1972) incorporating the use of
more general potentials that do not conform to the radially symmetric ‘muffin-tin’ model.
Published treatments of the generalized Ewald potential all involve multipole expansions, by
means of which a charge density distributed throughout a finite spherical volume is replaced
by an equivalent arrangement of point multipoles located at the centre of the sphere. The
potential due to the infinite periodic repetition of these multipoles is then obtained by use of
an appropriate lattice summation procedure, such as that described by Hama (1982). From the
computational viewpoint, the multipole method and the use of the Green function as described
here would be roughly equivalent—each term in the spherical harmonic expansion requires
evaluation of an integral over the radial coordinate which can be achieved by application
of an appropriate one-dimensional numerical quadrature formula. The additional overhead
associated with the presence of the modified spherical Bessel functions could be mitigated to
some extent by use of the recurrence formulae.

But the multipole and Green function methods differ in a more fundamental and
significant sense. The calculation of the multipole moments involves the loss of important
information on the diffuseness—the spatial extent—of the charge distribution; this information
is experimentally available through high-resolution single-crystal x-ray diffractometry.
Application of the multipole moment approach would result in identical potentials for two
periodic charge distributions with identical multipole components distributed over different
volumes, unless the lattice parameters of the periodic arrangements were correspondingly
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different. In particular, an array of spherically symmetric non-fluctuating neutral objects (for
example, in a model representing an atomic crystal) would have zero potential in the interstitial
regions. In contrast, the Green function method, which uses the components of the charge
density directly, i.e., without replacing them with equivalent point multipoles, does imply the
existence of a non-vanishing interstitial potential. That the Green function method predicts a
finite interstitial potential while the multipole expansion method does not results on the one
hand from the imposition of periodic boundary conditions, and on the other from the fact that
the multipole method involves replacing a charge distribution of finite spatial extent with one
that is concentrated at a point. Replacing a finite neutral object by its zeroth-order multipole
moment (i.e., a zero charge) is equivalent to shrinking the radius of the diffuse charge in
equation (57) to zero. It is also equivalent to keeping the positions of the charges and field
point constant, and allowing the lattice parameters to tend to infinity. In this limit the periodic
Green function correctly approaches the free-space Green function, as shown in part I, and the
spherical symmetry destroyed by imposition of periodic boundary conditions is recovered. It
is this symmetry that causes the electrostatic potential due to a neutral spherical object in free
space to vanish.

The idea that an array of spherically symmetric neutral objects should give rise to a finite
potential is somewhat counter-intuitive, but it is to be observed that the physical properties
of such a system are determined not by the potential alone, but by the interaction energy.
This is obtained from the potential by integrating the product of the potential and the atomic
charge densities over the volumes of the appropriate atomic spheres, and summing over all
distinguishable pairs of objects in the unit cell. This integration, which is enormously simplified
if the objects are spherically symmetrical, contains terms resulting from attractive interactions
between nuclei and diffuse electronic charges and repulsive interactions of the nuclei and the
charge clouds with each other. For neutral objects, extensive cancellation occurs when these
contributions are added. This treatment closely parallels the analysis of atomic interactions
presented by Gordon and Kim (1972); the difference is that the free-space Green function used
there is replaced by one satisfying periodic boundary conditions.

The limitations of the spherical-atom approximation were recognized many years ago
in the context of the refinement of crystal structures deduced from single-crystal x-ray
diffraction measurements. Hansen and Coppens (1978) described an improved analysis
involving parameterization of atomic charge densities by a spherical harmonic expansion in
which the distributed multipole densities are represented by Slater-type functions. Although
such charge-density models can in principle be combined with experimental x-ray scattering
data to estimate the electrostatic potential within the lattice, the success of such calculations
is limited on the one hand by the extreme slowness of the convergence of the appropriate
reciprocal-space summation, and on the other hand by the finite resolution of diffractometers.
In this regard it is to be observed that use of the rapidly converging Green function described
in the present work extends the accuracy of potential calculations based on such aspherical-
atom refinement models, since all finite spatial frequencies are automatically included—the
truncation of the Fourier series resulting from finite resolution is not necessary.

From the theoretical viewpoint, the distributed multipole density functions used in the
aspherical-atom refinement models can be regarded as arising from solution of the Schrödinger
equation with self-consistent inclusion of exchange and electrostatic lattice energies. While
the details of such calculations are clearly beyond the scope of the present paper, it seems
appropriate to conclude the discussion by commenting, in general terms, on the significance
of the present results in this connection. In the APW method the electronic wavefunction
to be determined is expanded in terms of basis functions represented as spherical harmonic
series within spheres about the nuclei, and as plane waves in the interstitial regions. The radial
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factors in the spherical harmonic representation are determined by numerical solution of a radial
Schrödinger equation with a muffin-tin potential (Loucks 1967, pp 47–55) that incorporates the
coulombic potential associated with the electronic distribution, obtained by numerical solution
of the radial Poisson equation. The evaluation of matrix elements in the secular determinant
is greatly facilitated if the combined exchange–electrostatic lattice potential is expanded in
spherical harmonics within the atomic spheres. In the scheme proposed by Rudge (1969b), this
representation was constructed by use of a multipole expansion for the electrostatic component
(Rudge 1969a) and linearization of the non-linear function relating the exchange energy to the
electron density. A more rigorous procedure would involve determination of the electrostatic
lattice potential by use of the Green function, addition of the exchange energy determined
from some non-linear function of the electron density, and numerical resolution of the total
potential into spherical harmonics. Several highly efficient algorithms based on fast Fourier
transformation are available for this purpose (Dilts 1985, Elowitz et al 1989, Alpert and Rokhlin
1991, Potts et al 1998).

An alternative approach to electronic structure calculations is the Hartree–Fock method,
which involves calculation of (numerous) integrals that represent interactions between charge
distributions. In adaptations of this method to polar molecular crystals (Panas 1992), it is
necessary to calculate the interactions between one charge distribution and infinite repetitions
of another: since integrations over two sets of polar coordinates are involved, use of the results
in this paper would not be practical, since each integral would require that the potential be
expanded in spherical harmonics of the field point coordinates. For solution of this problem,
and the related general problem of calculating the lattice energy of polar molecular crystals,
it is preferable to use a bipolar spherical harmonic expansion of the periodic Green function.
Application of the general method described in the present paper would require a bipolar
expansion of the screened Coulomb potential.

5. Conclusions

The Ewald sum of the periodic Green function for Poisson’s equation has been developed in a
spherical harmonic expansion. In the real-space part of the Ewald sum, the dependence on the
radial coordinates is expressed by an integral of a modified spherical Bessel function; the latter
is in turn expressible in terms of exponential integrals, repeated integrals of the complementary
error function, or incomplete gamma functions. The terms in the sum over lattice points
are attenuated exponentially, resulting in improved convergence properties compared with
previous treatments based on spherical harmonics.
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Appendix. Inversion of the Laplace transform and evaluation of the integral

Here, the details of the derivation of equation (20) are given. It is also shown that the integral
can be evaluated analytically in several alternative forms, all of which are amenable to efficient
computation.

A.1. Bessel function integral

The inverse Laplace transform of the product of the modified spherical Bessel functions
appearing in equation (16) follows from the following result, due to van der Pol and Bremmer
(1950, p 394)

L2

{
e−(a+b)/t

t
Iν

(
2
√

ab

t

)
U(t)

}
= 2pIν(2

√
ap)Kν(2

√
bp), (A.1)

where a < b, U(t) is the unit step function and the two-sided Laplace transform with parameter
p is

g(p) ≡ L2{f (t)} = p

∫ ∞

−∞
e−ptf (t) dt. (A.2)

In terms of the more usual definition of the one-sided Laplace transform with parameter s,
namely

g(s) ≡ L{fg(t)} =
∫ ∞

0
e−stf (t) dt, (A.3)

equation (A.1) is evidently equivalent to
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t
Iν

(
2
√

ab

t

)}
= 2Iν(2

√
as)Kν(2

√
bs). (A.4)

To apply equation (A.4), it is convenient to simplify the notation by representing the greater
and lesser of the two radial variables by R and r , respectively, and to make the substitutions

a = r2

4
b = R2

4
; (A.5)

L
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But the expression that appears in the spherical harmonic expansion is
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√

s

√
π

2r
√

s
In+1/2(r

√
s)

√
π

2R
√

s
Kn+1/2(R

√
s)

= In+1/2(r
√

s)Kn+1/2(R
√

s)

s
√

Rr
; (A.7)

since from equation (A.6)

L

{
e−(r2+R2)/4t

2t
In+1/2

(
Rr

2t

)}
= In+1/2(r

√
s)Kn+1/2(2R

√
s), (A.8)

it follows from elementary properties of Laplace transforms that

In+1/2(r
√

s)Kn+1/2(2R
√

s)

s
√

Rr
= L

{∫ t

o

e−(r2+R2)/4t

2t
√

Rr
In+1/2

(
Rr

2t

)
dt

}
. (A.9)
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Finally, making use of the definition of the modified spherical Bessel functions (equation (17))
leads to equation (20), since

1

2t
√

Rr

√
2Rr

2πt
in

(
Rr

2t

)
= 1

2
√

πt3
in

(
Rr

2t

)
. (A.10)

Analytical evaluation of the integral can be achieved in two ways. The first makes use of the
ascending power series expansion for the spherical modified Bessel function, which follows
from combination of the result

Iν(z) =
(

z

2

)ν ∞∑
p=0

1

p!6(ν + p + 1)

(
z

2

)2p

(A.11)

with the definition in equation (17), after setting ν = n + 1/2:

in(z) =
√

π

2

(
z

2

)n ∞∑
p=0

1

p!6(n + p + 3/2)

(
z

2

)2p

. (A.12)

Applying the elementary substitution∫ t

0

e−(R2+r2)/4t

2
√

πt3
in

(
Rr

2t

)
dt −−−−−−−−−−−−−−→

u=Rr/2t, dt=−(Rr/2u2) du

1√
2πRr

∫ ∞

Rr/2t

e−([R2+r2]/2Rr)u

√
u

in(u) du,

(A.13)

expanding the modified spherical Bessel function according to equation (A.12), and integrating
termwise results in a series of terms of the form√

2

Rr

∫ ∞

Rr/2t
e−([R2+r2]/2Rr)uu2p+n−1/2 du−−−−−−−−−→

ν=([R2+r2]/4Rr)u

√
2

Rr

(
2Rr

R2 + r2

)2p+n+1/2

×
∫ ∞

(R2+r2)/4t
e−νν2p+n−1/2 dν

= 1√
Rr

(
2Rr

R2 + r2

)2p+n+1/2

6

(
2p + n +

1

2
,
R2 + r2

4t

)
, (A.14)

where

6(z, z) ≡
∫ ∞

z

ta−1e−t dt

is the complementary incomplete gamma function, but the sum of these terms over p does not
converge. This problem can, however, be overcome by observing that

1√
2πRr

∫ ∞

Rr/2t

e−([R2+r2]/2Rr)u

√
u

in(u) du = 1√
2πRr

[∫ ∞

0

e−([R2+r2]/2Rr)u

√
u

in(u) du

−
∫ Rr/2t

0

e−([R2+r2]/2Rr)u

√
u

in(u) du

]
, (A.15)

and applying the same termwise integration method to the second integral on the right-hand
side. The first integral can be determined in closed form by making use of the Laplace
transform pair ∫ ∞

0
e−su Iν(au)

u
du = aν

ν

1[
s +

√
s2 − a2

]ν . (A.16)

(Erdélyi et al 1954 (p 196); cf Watson 1944 (p 388)), which is valid if Re(s) > a and Re(ν) > 0.
With a = 1 and ν = n + 1/2, this becomes
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∫ ∞

0
e−su In+1/2(u)

u
du =

√
2

π

∫ ∞

0
e−su in(u)√

u
du =

√
2

π

1

(n + 1/2)
[
s +

√
s2 − 1
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(A.17)

and setting

s = R2 + r2

2Rr
,

1√
2πRr

∫ ∞

0
e−([R2+r2]/2Rr)u in(u)√

u
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= 1

π
√
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1

2

)[
R2 + r2

2Rr
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√(
R2 + r2

2Rr

)2

− 1

]n+1/2)−1

.

(A.18)

Now termwise integration of the other integral gives

1√
2πRr

∫ Rr/2t
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√
u
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√
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1
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√
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p=0

1

p!6(n + p + 3/2)22p+n+1/2

(
2Rr

R2 + r2
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×
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e−νν2p+n−1/2 dν
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2
√

R2 + r2
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p=0
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(
2p + n + 1/2, [R2 + r2]/4t

)
p!6(n + p + 3/2)

(
Rr

R2 + r2

)2p+n

, (A.19)

where

γ (a, z) ≡
∫ z

0
ta−1e−t dt = e−zza
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p=0

6(a)

6(a + 1 + p)
zn

= e−zza
∞∑

p=0

1

(a + p)(a + p − 1) · · · (a − 1)a
zp

is the incomplete gamma function. From the cancellation of the gamma functions in the general
term of the power series

γ (a, z) = e−zza
∞∑

p=0

6(a)

6(a + 1 + p)
zn = e−zza
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p=0

1

(a + p)(a + p − 1) · · · (a − 1)a
zp,

(A.20)

it is clear that the above expression for the second integral of equation (A.15) is convergent.
The required integral is therefore

∫ t

0

e−(R2+r2)/4t

2
√

πt3
in

(
Rr

2t

)
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π
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− 1
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− 1

2
√
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γ (2p + n + 1/2, [R2 + r2]/4t)

p!6(n + p + 3/2)

(
Rr
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)2p+n

. (A.21)
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The convergence of the series can be expected to be slowest when R and r are very nearly
equal, but even in this case, convergence is reasonably fast. For example, with n = 0, r = 1,
R = 1.01, and t = 0.1, the terms in the series are as follows:

p γ

(
2p + n +

1

2
,
R2 + r2

4t

)
6

(
n + p +

3

2

) (
Rr

R2 + r2

)2p

Term

0 0.1769826558487914E+01 0.8862269254527573E+00 0.1000000000000000E+01 1.9970354179701117
1 0.1233046701261864E+01 0.1329340388179136E+01 0.2499752493626863E+00 0.2318677438560125
2 0.7648900863180841E+01 0.3323350970447840E+01 0.6248762529393718E−01 0.0719095959618898
3 0.9048343757676601E+02 0.1163172839656744E+02 0.1562035971493405E−01 0.0202518461430885
4 0.1412662037116506E+04 0.5234277778455348E+02 0.3904703314875497E−02 0.0043909481344239
5 0.2541113695430869E+05 0.2878852778150441E+03 0.9760791848233101E−03 0.0007179735515956
6 0.4962579872993717E+06 0.1871254305797787E+04 0.2439956376239345E−03 0.0000898719701761
7 0.1021345744914883E+08 0.1403440729348340E+05 0.6099287035845065E−04 0.0000088069847305
8 0.2178928035968024E+09 0.1192924619946089E+06 0.1524670797719970E−04 0.0000006906936193
9 0.4770776590390331E+10 0.1133278388948785E+07 0.3811299628560552E−05 0.0000000442142774

10 0.1065190194176059E+12 0.1189942308396224E+08 0.9527305750453375E−06 0.0000000023502189
11 0.2414751274202015E+13 0.1368433654655657E+09 0.2381590630724137E−06 0.0000000001052834
12 0.5541089526835874E+14 0.1710542068319572E+10 0.5953387117951035E−07 0.0000000000040261
13 0.1284177533786036E+16 0.2309231792231422E+11 0.1488199429362414E−07 0.0000000000001329
14 0.3000776555496798E+17 0.3348386098735562E+12 0.3720130234562768E−08 0.0000000000000038
15 0.7060914397927304E+18 0.5189998453040121E+13 0.9299404830464965E−09 0.0000000000000001

Thus, the computational effort required to evaluate the integral is not great, and is probably
comparable with that required to evaluate the error functions in a conventional Ewald
summation. The second analytical evaluation applies the same transformation as was used
in equation (A.13), but then uses the closed-form representation given by equation (18a):

1√
2πRr

∫ ∞

Rr/2t

e−([R2+r2]/2Rr)u

√
u

in(u) du = 1√
2πRr

∫ ∞

Rr/2t

e−([R2+r2]/2Rr)u

√
u

× 1

2u

[
eu

n∑
p=0

(−1)p(n + p)!

p!(n − p)!(2u)p
+ (−1)n+1e−u

n∑
p=0

(n + p)!

p!(n − p)!(2u)p

]
du.

(A.22)

The order of integration and summation in the first sum can be interchanged:

1√
2πRr

∫ ∞

Rr/2t

e−([R2+r2]/2Rr)u

√
u

eu

2u

n∑
p=0

(−1)p(n + p)!

p!(n − p)!(2u)p
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2πRr

n∑
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(−1)p(n + p)!

p!(n − p)!2p+1

∫ ∞

Rr/2t

e−([R2+r2]/2Rr−1)u

up+3/2
du (A.23)

and the integral further transformed:∫ ∞

Rr/2t

e−([R2+r2]/2Rr)u

up+3/2
du−−−−−−−−−−→

ν=([R2+r2]/2Rr−1)u

(
R2 + r2

2Rr
− 1

)p+1/2 ∫ ∞

([R2+r2]/4t−Rr/2t)

e−ν

νp+3/2
dν

=
(

R2 + r2

2Rr
− 1

)p+1/2

Ep+3/2

[
(R − r)2

4t

]
, (A.24)

where

En(z) ≡
∫ ∞

z

e−t

tn
dt

is the exponential integral function of order n. Therefore,
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1√
2πRr

∫ ∞

Rr/2t

e−([R2+r2]/2Rr)u
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2u

[
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p=0

(−1)p(n + p)!

p!(n − p)!(2u)p

]
du
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R2 + r2
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(R − r)2

4t

]
. (A.25)

Proceeding similarly for the other sum,

1√
2πRr

∫ ∞

Rr/2t
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R2 + r2

2Rr
+ 1
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Ep+3/2

[
(R + r)2

4t

]
, (A.26)

and forming the appropriate combination of equations (A.25) and (A.26) results in∫ t

0

e−(R2+r2)/4t

2
√

πt3
in

(
Rr

2t

)
dt

= 1√
2πRr
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p=0

(−1)p(n + p)!

p!(n − p)!2p+1
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2Rr
− 1
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Ep+3/2
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4t
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+
(−1)n+1

√
2πRr
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p=0

(n + p)!

p!(n − p)!2p+1

(
R2 + r2

4Rr
+ 1
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Ep+3/2

[
(R + r)2

4t
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. (A.27)

It is to be observed that the effort involved in the implementation of this closed-form result is
not great if the exponential integral functions are evaluated by means of the recursion schemes
developed by Gautschi (1961) and Amos (1980). Thus, since the integrals required in each
sum all have the same argument, they can be determined by a single call to a subroutine based
on these methods.

A.2. Error function integral representation

The third alternative expression follows by first making use of equation (18b):

kn(R
√

s)in(r
√

s)√
s

=
[
π

n∑
p=0

(n + p)!

p!(n − p)!(2R)p+1

e−R
√
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s1+p/2

]
in(r

√
s). (A.28)

Now from equation (18a),

in(r
√

s) = 1

2r
√

s

[
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√
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n∑
q=0

(−1)p(n + q)!

q!(n − q)!(2r
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s)q
+ (−1)n+1e−r

√
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n∑
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(n + q)!

q!(n − p)!(2r
√

s)p

]

(A.29)

which when substituted into equation (39) yields, after straightforward algebra,

kn(R
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s)in(r
√

s)√
s

= π

4
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p=0
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q=0
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√
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p!q!(n − p)!(n − q)!2p+q

e−(R+r)
√

s

Rp+1rq+1s1+(p+q+1)/2
. (A.30)

The inverse Laplace transform of this involves the n-fold repeated integral of the
complementary error function, erfcin, defined immediately following equation (21):

L−1

[
e−k

√
s

s1+n/2

]
= 2(

√
t)n erfcin

(
k

2
√

t

)
. (A.31)
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(Handbook of Mathematical Functions 1964, p 299, formula 2.7.3). Thus,

2
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2
√
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)
(A.32)

Apq = (n + p)!(n + q)!(−1)q

p!q!(n − p)!(n − q)!2p+q
Bpq = (n + p)!(n + q)!

p!q!(n − p)!(n − q)!2p+q
. (A.33)

Although twice as many erfci functions are present in each sum as there are exponential
integrals in equation (A.23), these functions are also amenable to efficient recursive
computation (Gautschi 1960). Thus, all the error functions of each argument can be determined
by one call to a subroutine implementing this algorithm.
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